In vivo analysis of the myosin heavy chain IIB promoter region.
نویسنده
چکیده
The myosin heavy chain (MHC) IIB gene is preferentially expressed in fast-twitch muscles of the hindlimb, such as the tibialis anterior (TA). The molecular mechanism(s) for this preferential expression are unknown. The goals of the current study were 1) to determine whether the cloned region of the MHC IIB promoter contains the necessary cis-acting element(s) to drive fiber-type-specific expression of this gene in vivo, 2) to determine which region within the promoter is responsible for fiber-type-specific expression, and 3) to determine whether transcription off of the cloned region of the MHC IIB promoter accurately mimics endogenous gene expression in a muscle undergoing a fiber-type transition. To accomplish these goals, a 2.6-kilobase fragment of the promoter-enhancer region of the MHC IIB gene was cloned upstream of the firefly luciferase reporter gene and coinjected with pRL-cytomegalovirus (CMV) (CMV promoter driving the renilla luciferase reporter) into the TA and the slow soleus muscle. Firefly luciferase activity relative to renilla luciferase activity within the TA was 35-fold greater than within the soleus. Deletional analysis demonstrated that only the proximal 295 base pairs (pGL3IIB0.3) were required to maintain this muscle-fiber-type specificity. Reporter gene expression of pGL3IIB0.3 construct was significantly upregulated twofold in unweighted soleus muscles compared with normal soleus muscles. Thus the region within the proximal 295 base pairs of the MHC IIB gene contains at least one element that can drive fiber-type-specific expression of a reporter gene.
منابع مشابه
IGF-I activates the mouse type IIb myosin heavy chain gene.
IGF-I increases skeletal muscle mass, but whether IGF-I increases type IIb myosin heavy chain (MyHC) transcriptional activity is not known. C2C12 myotubes were cultured with or without IGF-I to determine whether IGF-I increases type IIb MyHC promoter activity, and if so, what region of the promoter might IGF-I signaling regulate. At differentiation days 3 and 4, IGF-I increased type IIb MyHC mR...
متن کاملAn E-box within the MHC IIB gene is bound by MyoD and is required for gene expression in fast muscle.
The myosin heavy chain (MHC) IIB gene is selectively expressed in skeletal muscles, imparting fast contractile kinetics. Why the MHC IIB gene product is expressed in muscles like the tibialis anterior (TA) and not expressed in muscles like the soleus is currently unclear. It is shown here that the mutation of an E-box within the MHC IIB promoter decreased reporter gene activity in the fast-twit...
متن کاملMHC-IIB Filament Assembly and Cellular Localization Are Governed by the Rod Net Charge
BACKGROUND Actin-dependent myosin II molecular motors form an integral part of the cell cytoskeleton. Myosin II molecules contain a long coiled-coil rod that mediates filament assembly required for myosin II to exert its full activity. The exact mechanisms orchestrating filament assembly are not fully understood. METHODOLOGY/PRINCIPAL FINDINGS Here we examine mechanisms controlling filament a...
متن کاملExpression of the Myosin Heavy Chain IIB Gene in Porcine Skeletal Muscle: The Role of the CArG-Box Promoter Response Element
Due to its similarity to humans, the pig is increasingly being considered as a good animal model for studying a range of human diseases. Despite their physiological similarities, differential expression of the myosin heavy chain (MyHC) IIB gene (MYH4) exists in the skeletal muscles of these species, which is associated with a different muscle phenotype. The expression of different MyHC isoforms...
متن کاملAsymmetric distribution of myosin IIB in migrating endothelial cells is regulated by a rho-dependent kinase and contributes to tail retraction Running title: Myosin IIB asymmetry in migrating cells Key words: cell motility, cytoskeleton, polarity, myosin heavy chain, light chain phosphorylation
All vertebrates contain two nonmuscle myosin II heavy chains, A and B, which differ in tissue expression and subcellular distributions. To understand how these distinct distributions are controlled and what role they play in cell migration, myosin IIA and IIB were examined during wound healing by bovine aortic endothelial cells. Immunofluorescence showed that myosin IIA skewed toward the front ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 274 3 شماره
صفحات -
تاریخ انتشار 1998